Wir möchten Sie auf das Mathematisch-Physikalische Kolloquium der Fakultät für Mathematik und Physik der Leibniz Universität Hannover hinweisen.
Am Dienstag, den 3.5.2022 um 16:30 Uhr spricht
Dr. Lucia Morotti (Leibniz Universität Hannover)
in Hörsaal B302 zum Thema
Homogeneous reductions of spin representations.
Es handelt sich um ihre Antrittsvorlesung im Rahmen des Habilitationsverfahrens.
Abstract: Let V be a representation of a finite group G defined over a field k of characteristic 0. Up to possibly extending k, it is possible to find a subring R of k such that the R-span of a k-basis of V is G-stable. Coefficients can be then reduced modulo any maximal ideal of R to obtain a new representation V'. If the new field has characteristic p we say that V' is the reduction modulo p of V.
In general V' is not irreducible, even if V was. We say that V' is homogeneous if all of its composition factors are isomorphic. Clearly V' is homogeneous if it is irreducible, but the reverse does not necesearily hold.
A natural question can be, given a group G and a prime p, to classify all irreducible representations of G which are irreducible or homogeneous when reduced modulo p.
In this talk I will consider this question in the case where G is a double cover of a symmetric group and p=3. This is joint work with Matthew Fayers.